

SAFETY DATA SHEET

WANNATETM HT-80BS WANHUA CHEMICAL GROUP Co., LTD.

Version No: 3.6

Safety Data Sheet Safety Data Sheet - Authored according to GB/T16483(2008) and GB/T17519(2013)

Issue Date: **08/06/2022** Print Date: **08/06/2022**

L.GHS.CHN.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	WANNATE™ HT-80BS
Synonyms	Solution of 1, 6-Hexamethylene Diisocyanate Based Polyisocyanate
Proper shipping name	RESIN SOLUTION, flammable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Binding agents, intermediates; other: isocyanate component for polyurethanes.	
--	--

Details of the supplier of the safety data sheet

Registered company name	WANHUA CHEMICAL GROUP Co., LTD.			
Address	No. 59 Chongqing Street, YEDA, Yantai, Shandong Province, China.			
Telephone	0535-3031150			
Fax	0535-338222-1150			
Website	http://www.whchem.com			
Email	whsds@whchem.com			

Emergency telephone number

Association / Organisation	Emergency Center of China		
Emergency telephone numbers	+86 532-83889090		
Other emergency telephone numbers	+86 535-8203123		

SECTION 2 Hazards identification

Classification of the substance or mixture

Summary of Hazard in an Emergency Situation

Liquid.

Does not mix with water.Flammable.

Harmful by inhalation.

May cause SENSITISATION by inhalation.

May cause SENSITISATION by skin contact.

May cause CANCER.

Classification [1]

Flammable Liquids Category 3, Sensitisation (Respiratory) Category 1, Acute Toxicity (Inhalation) Category 4, Carcinogenicity Category 1A, Acute Toxicity (Oral) Category 5, Acute Toxicity (Dermal) Category 5, Serious Eye Damage/Eye Irritation Category 2B, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 3, Skin

 Version No: 3.6
 Page 2 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

Legend:

Corrosion/Irritation Category 3

1. Classified by Chemwatch; 2. China Classification Information Sheet of Hazardous Chemicals (Draft); 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H226	Flammable liquid and vapour.			
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.			
H332	Harmful if inhaled.			
H350	May cause cancer.			
H303	May be harmful if swallowed.			
H313	May be harmful in contact with skin.			
H320	Causes eye irritation.			
H317	May cause an allergic skin reaction.			
H412	Harmful to aquatic life with long lasting effects.			
H316	Causes mild skin irritation.			

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.				
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.				
P233	Keep container tightly closed.				
P271	Use only outdoors or in a well-ventilated area.				
P280	Wear protective gloves and protective clothing.				
P284	[In case of inadequate ventilation] wear respiratory protection.				
P240	Fround/bond container and receiving equipment.				
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.				
P242	Use only non-sparking tools.				
P243	Take precautionary measures against static discharge.				
P261	Avoid breathing mist/vapours/spray.				
P273	Avoid release to the environment.				
P202	Do not handle until all safety precautions have been read and understood.				
P264	Wash all exposed external body areas thoroughly after handling.				
P272	Contaminated work clothing should not be allowed out of the workplace.				

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.			
P321	Specific treatment (see advice on this label).			
P342+P311	f experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.			
P370+P378	n case of fire: Use alcohol resistant foam or normal protein foam to extinguish.			
P302+P352	F ON SKIN: Wash with plenty of water and soap.			
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.			
P332+P313	If skin irritation occurs: Get medical advice/attention.			
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.			
P337+P313	If eye irritation persists: Get medical advice/attention.			

 Version No: 3.6
 Page 3 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

P362+P364	Take off contaminated clothing and wash it before reuse.	
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.		
P405	Store locked up.		

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local/regional/national/international regulations.

Physical and Chemical Hazard

Liquid.

Does not mix with water.Flammable.

Flammable.

Toxic smoke/fumes in a fire.

Reacts with water.

Inhaled	Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. The main effects of simple aliphatic esters are narcosis and irritation and anaesthesia at higher concentrations. These effects become greater as the molecular weights and boiling points increase. Central nervous system depression, headache, drowsiness, dizziness, coma and neurobehavioral changes may also be symptomatic of overexposure. Respiratory tract involvement may produce mucous membrane irritation, dyspnea, and tachypnea, pharyngitis, bronchitis, pneumonitis and, in massive exposures, pulmonary oedema (which may be delayed). Gastrointestinal effects include nausea, vomiting, diarrhoea and abdominal cramps. Liver and kidney damage may result from massive exposures. The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment. Inhalation hazard is increased at higher temperatures.				
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.				
Skin Contact	Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either * produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or * produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.				
Еуе	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuand/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.				
Chronic	On the basis of epidemiological data, it has been concluded that prolonged inhalation of the material, in an occupational setting, may produce cancer in humans. Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue,				

 Version No: 3.6
 Page 4 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers

Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyperresponsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancer.

Polyisocyanates still contain small amounts of monomeric isocyanate (typically <0.5 parts per weight) and both – the polyisocyanate and the monomer - have toxicological importance. In addition, solvents also contribute to the overall toxicity of these products.

Due to the higher molecular weight and the much lower vapor pressure the polyisocyanates exhibit a significantly reduced health hazard as compared to the corresponding monomers. Nevertheless they should only be handled under controlled conditions. They are not or only slightly irritating to the skin and eyes, but might be irritating to the respiratory tract (nose, throat, lung). Polyisocyanates might act as skin sensitisers On that basis there is clear evidence from sensitive animal models that aliphatic polyisocyanates and prepolymers (HDI-based as well as IPDI-based, for example) may cause skin sensitisation. it is decided to classify all HDI-based and IPDI-based polyisocyanates and prepolymers as skin sensitisers. From animal models, however, there is no evidence that polyisocyanates are sensitising to the respiratory tract. Results from animal tests with repeated aerosol exposures indicate that under these conditions the respiratory tract is the primary target of aliphatic polyisocyanates, other organs are not significantly affected...

Available information does not provide evidence that polyisocyanates might either be mutagenic, carcinogenic or toxic to reproduction.

Polymers based on isocyanate monomers (polyurethanes) are generally of low concern. However, in the majority of cases it is not possible to conclude from the chemical name of the polymer whether an individual polyurethane is, or is not, of low concern. Finished polyurethane polymers used in the majority of household applications contain no unreacted isocyanate groups. The production of these polymers involves the use of an excess of the hydroxyl group-containing monomer or monomers leading to complete reaction of all of the isocyanate groups.

For certain applications, however, similar polymer chemistry can be used with the isocyanate group-containing monomer in excess. This results in the formation of a polyurethane 'pre-polymer', which is intended to be further reacted in its end use. Where the pre-polymer is identified as being 'blocked', it indicates that there are no free isocyanate groups.

The polymer contained in this product has a reactive group generally considered to be of high concern (US EPA). There are health concerns for isocyanates on the basis of their skin and respiratory sensitisation properties and other lung effects e.g TDI and MDI). Aromatic isocyanates may be potentially carcinogenic (e.g. TDI and DADI). Frequently new chemical isocyanates are manufactured with a significant excess of isocyanate monomer. Whilst it is generally accepted that polymers with a molecular weight exceeding 1000 are unlikely to pass through biological membranes, oligomers with lower molecular weight and specifically, those with a molecular weight below 500, may. Estimations based on a 'highly' dispersed polymer population suggest that a polymer of approximate molecular weight 5000 could contain no more than one reactive group of high concern for it to be regulated as a polymer of low concern (a so-called PLC) Polymers with a molecular weight above 10000 are generally considered to be PLCs because these are not expected to be absorbed by biological systems. The choice of 10000 as a cut-off value is thought to provide a safety factor of 100, regarded as reasonable in light of limited data, duration of studies, dose levels at which effects are seen, and extrapolation from animals to humans.

Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates.

The chemistry of reaction of isocyanates, as evidenced by MDI, in biological milieu is such that in the event of a true exposure of small MDI doses to the mouth, reactions will commence at once with biological macromolecules in the buccal region and will continue along the digestive tract prior to reaching the stomach. Reaction products will be a variety of polyureas and macromolecular conjugates with for example mucus, proteins and cell components.

This is corroborated by the results from an MDI inhalation study. Following an inhalation exposure of rats to radiolabelled MDI, 79% of the dose was excreted in faeces. The faecal excretion in these animals was considered entirely due to ingestion of radioactivity from grooming and ingestion of deposited material from the nasopharangeal region via the mucociliary escalator, i.e. not following systemic absorption. The faecal radioactivity was tentatively identified as mixed molecular weight polyureas derived from MDI. Diamine was not present. Thus, for MDI and diisocyanates in general the oral gavage dosing route is inappropriate for toxicological studies and risk assessment.

It is expected that oral gavage dosing will result in a similar outcome to that produced by TDI or MDI, that is (1) reaction with stomach contents and (2) polymerization to solid polyureas.

- Reaction with stomach contents is very plausibly described in case reports of accidental ingestion of polymeric MDI based glue in domestic animals. Extensive polymerization and CO2 liberation resulting in an expansion of the gastric content is described in the stomach, without apparent acute chemical toxicity
- Polyurea formation in organic and aqueous phases has been described. In this generally accepted chemistry of hydrolysis of

 Version No: 3.6
 Page 5 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

an isocyanate the initially produced carbamate decarboxylates to an amine which. The amine, as a reactive intermediate, then reacts very readily with the present isocyanate to produce a solid and inert polyurea. This urea formation acts as a pH buffer in the stomach, thus promoting transformation of the diisocyanate into polyurea, even under the acidic conditions.

At the resorbtive tissues in the small intestine, these high molecular reaction products are likely to be of very low bioavailability, which is substantiated by the absence of systemic toxicity in acute oral bioassays with rats at the OECD limit dose (LC50>2 g/kg bw).

The respiratory tract may be regarded as the main entry for systemically available isocyanates as evidenced following MDI.exposures.

A detailed summary on urinary, plasma and in vitro metabolite studies is provided below. Taken together, all available studies provide convincing evidence that MDI-protein adduct and MDI-metabolite formation proceeds:

- via formation of a labile isocyanate glutathione (GSH)-adduct,
- then transfer to a more stable adduct with larger proteins, and
- without formation of free MDA. MDA reported as a metabolite is actually formed by analytical workup procedures (strong acid or base hydrolysis) and is not an identified metabolite in urine or blood

A 90-day inhalation study in rats with polymeric MDI (6 hours/day, 5 days/week) produced moderate to severe hyperplastic inflammatory lesions in the nasal cavities and lungs at levels of 8 mg/m3 or greater.

Rats exposed for two years to a respirable aerosol of polymeric MDI exhibited chronic pulmonary irritation at high concentrations. Only at the highest level (6 mg/m3), was there a significant incidence of a benign tumour of the lung (adenoma) and one malignant tumour (adenocarcinoma). There were no lung tumours at 1 mg/m3 and no effects at 0.2 mg/m3. Overall, the tumour incidence, both benign and malignant and the number of animals with the tumours were not different from controls. The increased incidence of lung tumours is associated with prolonged respiratory irritation and the concurrent accumulation of yellow material in the lung, which occurred throughout the study. In the absence of prolonged exposure to high concentrations leading to chronic irritation and lung damage, it is highly unlikely that tumour formation will occur.

Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, itching, hives and swelling of extremities.

Isocyanate-containing vapours/ mists may cause inflammation of eyes and nasal passages.

Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material

Environmental Hazards

See Section 12

Other hazards

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
822-06-0	≤0.2	hexamethylene diisocyanate	
123-86-4	~10	n-butyl acetate	
64742-95-6	~10	solvent naphtha 100	
28182-81-2	~80	hexamethylene diisocyanate polymer	
Legend:	Legend: 1. Classified by Chemwatch; 2. China Classification Information Sheet of Hazardous Chemicals (Draft); 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Seek medical attention without delay; if pain persists or recurs seek medical attention.

 Version No: 3.6
 Page 6 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If skin contact occurs: Immediately remove all contaminated clothing, including footwear. **Skin Contact** Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. • If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket Inhalation mask as trained. Perform CPR if necessary. ▶ Transport to hospital, or doctor. Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted. If swallowed do **NOT** induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Ingestion • Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. ► Seek medical advice. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Advise for rescue team (PPE requirement for rescue personnel)

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. for simple esters:

BASIC TREATMENT

- ► Establish a patent airway with suction where necessary.
- ▶ Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- ▶ Monitor and treat, where necessary, for pulmonary oedema .
- ▶ Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- · Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- ▶ Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- ▶ Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- $\mbox{\ }\mbox{\ }$ Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For sub-chronic and chronic exposures to isocyanates:

- This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity.
- ▶ Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts.
- Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.

 Version No: 3.6
 Page 7 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

- Some cross-sensitivity occurs between different isocyanates.
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
- ▶ Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
- ▶ Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.
- Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
- There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux: Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity.

[Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

SECTION 5 Firefighting measures

Extinguishing media

- Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam.
- Presents additional hazard when fire fighting in a confined space.
- Cooling with flooding quantities of water reduces this risk
- Water spray or fog may cause frothing and should be used in large quantities.
- Alcohol stable foam.
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

 Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) Fire/Explosion Hazard carbon monoxide (CO) isocyanates hydrogen cyanide and minor amounts of nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur Burns with acrid black smoke.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Measures for Preventing Secondary Contamination

Refer to section above

Environmental precautions

Version No: **3.6** Page **8** of **29** Issue Date: **08/06/2022**

WANNATETM HT-80BS

See section 12

Methods and material for containment and cleaning up

Minor Spills

▶ Remove all ignition sources.

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- ▶ Wine un
- ▶ Collect residues in a flammable waste container.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- ▶ Prevent, by all means available, spillage from entering drains or water courses.
- ► Consider evacuation (or protect in place).
- ▶ No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- ▶ Contain or absorb spill with sand, earth or vermiculite.
- ▶ Collect recoverable product into labelled containers for recycling.
- ▶ Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Chemical Class: ester and ethers

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R,I, P
wood fiber - particulate	3	shovel	shovel	R, W, P, DGC
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT
treated wood fiber - pillow	3	throw	pitchfork	DGC, RT

Major Spills

LAND SPILL - MEDIUM

cross-linked polymer - particulate	1	blower	skiploader	R,W, SS
cross-linked polymer - pillow	2	throw	skiploader	R, DGC, RT
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC
wood fiber - particulate	4	blower	skiploader	R, W, P, DGC

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

 $\label{lem:control} \textbf{Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;}$

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus - SCBA should be used inside encapsulating suit where this exposure may occur.

For isocyanate spills of less than 40 litres (2 m2):

- Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible.
- Notify supervision and others as necessary.
- Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots).

Print Date: 08/06/2022

Version No: **3.6** Page **9** of **29** Issue Date: **08/06/2022**

WANNATETM HT-80BS

Print Date: 08/06/2022

- ► Control source of leakage (where applicable).
- ▶ Dike the spill to prevent spreading and to contain additions of decontaminating solution.
- Prevent the material from entering drains.
- Estimate spill pool volume or area.
- Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume).
 Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
- ▶ Shovel absorbent/decontaminant solution mixture into a steel drum.
- Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. - Completely cover decontaminant with vermiculite or other similar absorbent. - After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above.
- Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
- Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration.
- Decontaminate and remove personal protective equipment.
- Return to normal operation.
- ▶ Conduct accident investigation and consider measures to prevent reoccurrence.

Decontamination:

Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ('neutralising fluid'). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

Typically, such a preparation may consist of:

Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v}.

Let stand for 24 hours

Three commonly used neutralising fluids each exhibit advantages in different situations.

Formulation A:

liquid surfactant 0.2-2% sodium carbonate 5-10%

water to 100%

Formulation B

liquid surfactant 0.2-2%

concentrated ammonia 3-8%

water to 100%

Formulation C

ethanol, isopropanol or butanol 50%

concentrated ammonia 5%

water to 100%

After application of any of these formulae, let stand for 24 hours.

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

- Avoid contamination with water, alkalies and detergent solutions.
- Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- ► DO NOT reseal container if contamination is suspected.
- ▶ Open all containers with care.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- ▶ Avoid all personal contact, including inhalation.
- ▶ Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.

Safe handling DO NOT enter confined s

- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid generation of static electricity.
- ► DO NOT use plastic buckets.
- ► Earth all lines and equipment.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.

Version No: **3.6** Page **10** of **29** Issue Date: **08/06/2022**

WANNATETM HT-80BS

Print Date: 08/06/2022

- ▶ When handling, **DO NOT** eat, drink or smoke.
- ► Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Consider storage under inert gas.

- Store in original containers in approved flammable liquid storage area.
- ▶ Store away from incompatible materials in a cool, dry, well-ventilated area.
- ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- ▶ No smoking, naked lights, heat or ignition sources.
- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access.
- Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
- buse non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
- Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors.
- Keep adsorbents for leaks and spills readily available.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

- ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up.
- ▶ Storage tanks should be above ground and diked to hold entire contents.

Other information

for commercial quantities of isocyanates:

- · Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- · Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken.
- · Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions)..
- · Transfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
- · Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.
- · Ideal storage temperature range is dependent on the specific polymer due to viscosity and melting point differences between the polymers. Use 25 deg C (77 deg F) to 30 deg C (86 deg F) as a guideline to most liquid isocyanates for optimum storage temperature. If some isocyanates are stored at or below a temperature of 25 deg C (77 deg F), crystallization and settling of the isocyanate may occur. Storage in a cold warehouse can cause crystals to form. These crystals can settle to the bottom of the container. If crystals do form, they can be melted easily with moderate heat. It is suggested that a container the size of a drum be warmed for 16-24 hours at sufficient temperature to melt the crystals. When the crystals are melted, the container should be agitated by rolling or stirring, until the contents are homogenous. Since heated isocyanate will generate vapors more rapidly than product stored at 25 deg C (77 deg F), be sure to follow the precautions under the Personal Protection.

Conditions for safe storage, including any incompatibilities

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- ► Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- ► For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- ▶ For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Suitable container

n-Butyl acetate:

- reacts with water on standing to form acetic acid and n-butyl alcohol
- reacts violently with strong oxidisers and potassium tert-butoxide
- ▶ is incompatible with caustics, strong acids and nitrates

Version No: **3.6** Page **11** of **29** Issue Date: **08/06/2022**

WANNATETM HT-80BS

Print Date: 08/06/2022

- b dissolves rubber, many plastics, resins and some coatings
- Esters react with acids to liberate heat along with alcohols and acids.
- ▶ Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- Heat is also generated by the interaction of esters with caustic solutions.
- Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- Esters may be incompatible with aliphatic amines and nitrates.
- · Avoid reaction with water, alcohols and detergent solutions. Isocyanates are electrophiles, and as such they are reactive toward a variety of nucleophiles including alcohols, amines, and even water. Upon treatment with an alcohol, an isocyanate forms a urethane linkage. If a di-isocyanate is treated with a compound containing two or more hydroxyl groups, such as a diol or a polyol, polymer chains are formed, which are known as polyurethanes. Reaction between a di-isocyanate and a compound containing two or more amine groups, produces long polymer chains known as polyureas.
- · Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials.
- · Isocyanates also can react with themselves. Aliphatic di-isocyanates can form trimers, which are structurally related to cyanuric acid. Isocyanates participate in Diels-Alder reactions, functioning as dienophiles
- · Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds.
- · Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture.
- · Do NOT reseal container if contamination is expected
- · Open all containers with care
- · Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence,
- \cdot Isocyanates will attack and embrittle some plastics and rubbers.
- · The isocyanate anion is a pseudohalide (syn pseudohalogen) whose chemistry, resembling that of the true halogens, allows it to substitute for halogens in several classes of chemical compounds.. The behavior and chemical properties of the several pseudohalides are identical to that of the true halide ions.
 - A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.
 - The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment.
- For example, in 'open vessel processes' (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in 'closed vessel processes' (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
China Occupational Exposure Limits for Hazardous Agents in the Workplace	hexamethylene diisocyanate	1,6-Diisocyantohexane (1,6- Hexamethylene diisocyanate)	0.03 mg/m3	Not Available	Not Available	敏
China Occupational Exposure Limits for Hazardous Agents in the Workplace	n-butyl acetate	Butyl acetate	200 mg/m3	300 mg/m3	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
hexamethylene diisocyanate	0.018 ppm	0.2 ppm	3 ppm
n-butyl acetate	Not Available	Not Available	Not Available
solvent naphtha 100	1,200 mg/m3	6,700 mg/m3	40,000 mg/m3
hexamethylene diisocyanate	7.8 mg/m3	86 mg/m3	510 mg/m3

Ingredient	Original IDLH	Revised IDLH
hexamethylene diisocyanate	Not Available	Not Available
n-butyl acetate	1,700 ppm	Not Available
solvent naphtha 100	Not Available	Not Available

 Version No: 3.6
 Page 12 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

Ingredient	Original IDLH	Revised IDLH
hexamethylene diisocyanate polymer	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
hexamethylene diisocyanate polymer	Е	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemical potency and the adverse health outcomes associated with exposure band (OEB), which corresponds to a range of exposure concentration.	re. The output of this process is an occupational exposure

MATERIAL DATA

for isocyanates:

Some jurisdictions require that health surveillance be conducted on occupationally exposed workers. This should emphasise:

- demography, occupational and medical history and health advice
- completion of a standardised respiratory questionnaire
- physical examination of the respiratory system and skin
- ▶ standardised respiratory function tests such as FEV1, FVC and FEV1/FVC

Various portable or stationary instruments are available for the continuous measurement of isocyanates in the air. All of them function on the principle of colourimetric evaluation of an indicator paper strip. They are operating continuously and unattended. Paper tape systems are easy to use and do not require skilled analysts to operate them. They give rapid results and are therefore suitable for leak detection and in emergency situations. However,:

- they may read incorrect at very high or very low humidity,
- ▶ are unsuitable for aerosols
- ▶ and may not be accepted for purposes of regulatory compliance.

Air monitoring of isocyanates requires sound analytical knowledge. In order to obtain reliable results only laboratories with experience in that specific area should be engaged with such measurements

In the evaluation of the German MAK Commission the justification of the OEL for 4,4 - MDI/ pMDI is established based on the isocyanate (NCO) group which is common to the monomeric, oligomeric and the polymeric MDIs. This NCO group is highly reactive (see toxicokinetics and category justification for details). Due to this high reactivity of the functional NCO group towards nucleophilic biomolecules the primary health effect of MDI is irritation at the point of contact, which can be demonstrated by the numerous acute, subacute and chronic bioassays, and sensitization.

The most sensitive health effect resulting from acute inhalation exposure to respirable aerosols of MDI is irritation to predominately the bronchio-alveolar part of the respiratory tract.

After inhalation exposure, MDI reacts with nucleophilic low and higher-molecular components of the liquid films that cover the airways, glutathione (GSH) represents the most important nucleophile in quantitative terms. The low-molecular adducts or conjugates of MDI are absorbed and direct transcarbamoylation results in plasma protein adducts (albumin, haemoglobin). All observed health effects resulting from exposure to respirable aerosols in acute, subchronic or chronic bioassays and human studies can be allocated to primary alveolar reactivity (respiratory irritation and/or sensitization). No systemic effect other than secondary to primary irritation has been described.

Biomonitoring for exposure to diisocyanates typically looks to assay derivatives (diamines) following hydrolysis of biological fluids and is routinely employed to measure occupational exposure to MDI and other diisocyanates. For diamine analysis, samples of urine are typically used, although blood samples can also be used. However, these markers are not specific for the diisocyanate exposure. The urine biomarkers (after acid or base hydrolysis) reflected recent exposures whereas certain haemoglobin (Hb) biomarkers did not necessarily correlate with the urine biomarkers, and were considered to reflect overall exposures over a longer term. The hydrolysis methods and conditions used release differing amounts of the diamine analyte.

Hydrolysis analytes are at low concentrations and proportionally little of the dose is in urine or blood, and that there is no standardised method for measuring biomarkers in hydrolyzed urine. Investigation of diisocyanate specific biomarkers has focused on the conjugated molecules in blood. Typically, conjugates with Hb or albumin (Alb) have been assessed, and there has been progress in application of experiments in animals to biomonitoring of human exposures to MDI.

The role for glutathione as an intermediary in transport of diisocyanates is now supported by good evidence using various model compounds. The most probable reactions of isocyanates with biological macromolecules are with the amine (mixed urea), the hydroxyl (carbamate) and the sulphydryl (thiolytic acid ester) and that latter is of a reversible nature.

The thiocarbamate bond of isocyanate-sulphydryl is reversible, and various authors have found release and transfer of MDI moieties from thiocarbamate conjugates to other nucleophiles, notably protein. The conjugates were shown to be recognised by serum IgG from MDI exposed workers, demonstrating a non-enzymatic, thiol-mediated transcarbamolyating mechanism to protein.

The methods to identify and quantify MDI-adducts to plasma proteins particularly albumin (Alb) and to haemoglobin (Hb) have now been applied to biological monitoring, particularly useful since the amount of adducts would be indicative of an integrated exposure. In addition these adducts are specific for MDI exposure. However the total amount of the analyte MDA, retrievable from Hb-adducts and urinary precursors, accounts for less than 0.5 % of the applied dose of MDI, and the lack of linearity of biomarker to exposure dose makes uncertain the extrapolation from the yield of biomarkers in urine or blood towards inhalative MDI exposure. The use of protein adducts for biomonitoring appears to overcome some of these difficulties and benefits from specificity of the analyte. To date no diisocyanate specific urinary biomarker has been identified. For blood, the MDI-specific methods developed are: Hb-conjugate derived hydantoin, Alb-lysine conjugates and peptide conjugates. On the basis of limits of detection, the Hb-hydantoin method is most sensitive compared to the Alb-lysine method which in turn is more sensitive than the signature peptide method. The Hb-hydantoin method covers a longer period of exposure than the Alb-lysine, due to the longer half life of the erythrocyte compared to serum albumin.

For n-butvl acetate

Odour Threshold Value: 0.0063 ppm (detection), 0.038-12 ppm (recognition)

Exposure at or below the recommended TLV-TWA is thought to prevent significant irritation of the eyes and respiratory passages as well as narcotic effects. In light of the lack of substantive evidence regarding teratogenicity and a review of acute oral data a STEL is considered inappropriate.

Odour Safety Factor(OSF)

OSF=3.8E2 (n-BUTYL ACETATE)

 Version No: 3.6
 Page 13 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

- Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a 'glove-box'. Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.
- All processes in which isocyanates are used should be enclosed wherever possible.
- Total enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure standards.
- If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane is sprayed.
- Where other isocyanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards.
- Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard.

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations (AS/NZS 4114, UNI EN 12215:2010, ANSI/AIHA Z9.3–2007 or national equivalent).
- Local exhaust ventilation with full face positive-pressure air supplied breathing apparatus (hood or helmet type) is required.
- Spraying should be performed in a spray booth fitted with an effective exhaust system which complies with local environmental legislation.
- The spray booth area must be isolated from unprotected personnel whilst spraying is in progress and until all spraying mist has cleared.

NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Appropriate engineering controls

Version No: **3.6** Page **14** of **29** Issue Date: **08/06/2022**

WANNATETM HT-80BS

Print Date: 08/06/2022

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.

Eye and face protection in

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

For esters:

▶ Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- \cdot frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Hands/feet protection

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

· Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these

Version No: **3.6** Page **15** of **29** Issue Date: **08/06/2022**

WANNATETM HT-80BS

gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.

· Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Do NOT wear natural rubber (latex gloves).
- ▶ Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- ▶ Protective gloves and overalls should be worn as specified in the appropriate national standard.
- ► Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- ▶ NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates
- ▶ DO NOT use skin cream unless necessary and then use only minimum amount.
- Isocyanate vapour may be absorbed into skin cream and this increases hazard.

Body protection

See Other protection below

Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent]

- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent]
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.

Other protection

All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential.

Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known.

- Overalls.
- ► PVC Apron.
- PVC protective suit may be required if exposure severe.
- Evewash unit
- ▶ Ensure there is ready access to a safety shower.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

Forsberg Clothing Performance Index'.

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

WANNATETM HT-80BS

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NATURAL RUBBER	С
NEOPRENE	С

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

	Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
	up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
	up to 50 x ES	-	A-AUS / Class 1	-
ſ	up to 100 x ES	-	A-2	A-PAPR-2 ^

Print Date: 08/06/2022

Version No: **3.6** Page **16** of **29** Issue Date: **08/06/2022**

WANNATETM HT-80BS

NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PE/EVAL/PE	С
PVA	С
PVC	С
SARANEX-23	С
TEFLON	С
VITON/BUTYL	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Print Date: 08/06/2022

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

For spraying or operations which might generate aerosols:

Full face respirator with supplied air.

- In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.
- However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used.
- Organic vapour respirators with particulate pre- filters and powered, air-purifying respirators are NOT suitable.
- Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected.
- Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	colorless to pale yellow		
Physical state	Liquid	Relative density (Water = 1)	1.1 g/cm3 (at 25 °C)
Odour	solvent-like	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	135 (at 25 °C)
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	46	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available

Version No: 3.6 Page 17 of 29 Issue Date: 08/06/2022 Print Date: 08/06/2022

WANNATE $^{\text{TM}}$ HT-80BS

Upper Explosive Limit (%)	7.5	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.2	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

WANNATE TM HT-80BS	TOXICITY		IRRITATION	
WANNAIE'''' HI-80B2	Not Available		Not Available	
	TOXICITY	IR	RITATION	
	Dermal (rabbit) LD50: 593 mg/kg ^[2]		Eye: adverse effect observed (irritating) ^[1]	
	Inhalation(Mouse) LC50; 30 mg/m3 ^[2]	SI	in: adverse effect observed (corrosive) ^[1]	
hexamethylene diisocyanate	Inhalation(Rat) LC50; 60 mg/m3/4h ^[2]	SI	in: adverse effect observed (irritating) ^[1]	
ancocyanato	Intravenous (Mouse) LD50: 5.6 mg/kg ^[2]			
	Oral (Mouse) LD50; 350 mg/kg ^[2]			
	Oral (Rat) LD50; 738 mg/kg ^[2]			
	TOXICITY	IRRITAT	ON	
	Dermal (rabbit) LD50: 3200 mg/kg ^[2] Eye (huma		man): 300 mg	
	Inhalation(Rat) LC50; 0.74 mg/l4h ^[2] Eye (r		oit): 20 mg (open)-SEVERE	
n-butyl acetate	Oral (Rabbit) LD50; 3200 mg/kg ^[2] Eye (oit): 20 mg/24h - moderate	
	Eye:		Eye: no adverse effect observed (not irritating) ^[1]	
	Skin (in (rabbit): 500 mg/24h-moderate	
		Skin: no	adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRI	TATION	
solvent naphtha 100	Inhalation(Rat) LC50; >3670 ppm/8 h *[2]	Eye:	e: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50; >5000 mg/kg *[2]	Skin:	adverse effect observed (irritating) ^[1]	
	TOXICITY		IRRITATION	
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]			

Inhalation(Rat) LC50; 0.052-0.5 mg/L4h^[1]

Version No: 3.6 Page 18 of 29 Issue Date: 08/06/2022

Print Date: 08/06/2022 WANNATETM HT-80BS

Oral (Rat) LD50; >2000 mg/kg[1]

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. for diisocyanates:

In general, there appears to be little or no difference between aromatic and aliphatic diisocyanates as toxicants. In addition, there are insufficient data available to make any major distinctions between polymeric (<1000 MW) and monomeric diisocyanates. Based on repeated dose studies in animals by the inhalation route, both aromatic and aliphatic diisocyanates appear to be of high concern for pulmonary toxicity at low exposure levels. Based upon a very limited data set, it appears that diisocvanate prepolymers exhibit the same respiratory tract effects as the monomers in repeated dose studies. There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route. Most members of the diisocyanate category have not been tested for carcinogenic potential. Though the aromatic diisocyanates tested positive and the one aliphatic diisocyanate tested negative in one species, it is premature to make any generalizations about the carcinogenic potential of aromatic versus aliphatic diisocyanates. In the absence of more human data, it would be prudent at this time to assume that both aromatic and aliphatic diisocyanates are respiratory sensitisers. Diisocyanates are moderate to strong dermal sensitisers in animal studies. Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocvanates.

For monomers, effects on the respiratory tract (lungs and nasal cavities) were observed in animal studies at exposure concentrations of less than 0.005 mg/L. The experimental animal data available on prepolymeric diisocyanates show similar adverse effects at levels that range from 0.002 mg/L to 0.026 mg/L.

There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route Oncogenicity: Most members of the diisocyanate category have not been tested for carcinogenic potential. Commercially available Poly-MDI was tested in a 2-year inhalation study in rats. The tested material contained 47% aromatic 4,4'-methylenediphenyl diisocyanate (MDI) and 53% higher molecular weight oligomers. Interim sacrifices at one year showed that males and females in the highest dose group (6 mg/m3) had treatment related histological changes in the nasal cavity, lungs and mediastinal lymph nodes. The incidence and severity of degeneration and basal cell hyperplasia of the olfactory epithelium and Bowman's gland hyperplasia were increased in males at the mid and high doses and in females at the high dose following the two year exposure period. Pulmonary adenomas were found in 6 males and 2 females, and pulmonary adenocarcinoma in one male in the high dose group. However, aliphatic hexamethylene diisocyanate (HDI) was found not to be carcinogenic in a two vear repeated dose study in rats by the inhalation route. HDI has not been tested in mice by the inhalation route. Though the oral route is not an expected route of exposure to humans, it should be noted that in two year repeated dose studies

by the oral route, aromatic toluene diisocyanate (TDI) and 3,3'-dimethoxy-benzidine-4,4'-diisocyanate (dianisidine diisocyanate, DADI) were found to be carcinogenic in rodents. TDI induced a statistically significant increase in the incidence of liver tumors in rats and mice as well as dose-related hemangiosarcomas of the circulatory system and has been classified by the Agency as a B2 carcinogen. DADI was found to be carcinogenic in rats, but not in mice, with a statistically increase in the incidence of pancreatic tumors observed.

Respiratory and Dermal Sensitization: Based on the available toxicity data in animals and epidemiologic studies of humans, aromatic diisocyanates such as TDI and MDI are strong respiratory sensitisers. Aliphatic diisocyanates are generally not active in animal models for respiratory sensitization. However, HDI and possibly isophorone diisocyanate (IPDI), are reported to be associated with respiratory sensitization in humans. Symptoms resulting from occupational exposure to HDI include shortness of breath, increased bronchoconstriction reaction to histamine challenges, asthmatic reactions, wheezing and coughing. Two case reports of human exposure to IPDI by inhalation suggest IPDI is a respiratory sensitiser in humans. In view of the information from case reports in humans, it would be prudent at this time to assume that both aromatic and aliphatic diisocyanates are respiratory sensitisers. Studies in both human and mice using TDI, HDI, MDI and dicyclohexylmethane-4.4'-diisocyanate (HMDI) suggest cross-reactivity with the other diisocyanates, irrespective of whether the challenge compound was an aliphatic or aromatic diisocyanate. Diisocyanates are moderate to strong dermal sensitisers in animal studies. There seems to be little or no difference in the level of reactivity between aromatic and aliphatic diisocyanates.

Dermal Irritation: Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocyanates. The level of irritation ranged from slightly to severely irritating to the skin. One chemical. hydrogenated MDI (1,1-methylenebis-4-isocyanatocyclohexane), was found to be corrosive to the skin in guinea pigs. for 1,6-hexamethylene diisocyanate:

Exposures to HDI are often associated with exposures to its prepolymers, especially to a trimeric biuretic prepolymer of HDI (HDI-BT), which is widely used as a hardener in automobile and airplane paints, and which typically contains 0.5-1% unreacted HDI. There is evidence that diisocyanate prepolymers may induce asthma at the same or greater frequency as the monomers; therefore, there is a need to assess the potential for human exposure to prepolymeric HDI as well as monomeric HDI. 1,6-Hexamethylene diisocyanate is corrosive to the skin and the eye.

1,6-Hexamethylene diisocyanate was found to induce dermal and respiratory sensitization in animals and humans. There is no threshold known for this effect.

Inhalation studies with repeated exposures to 1,6-hexamethylene diisocyanate vapor show that the respiratory tract is the target with 1,6-hexamethylene diisocyanate showing primarily upper respiratory tract lesions (nasal cavity). 1,6-Hexamethylene

hexamethylene diisocvanate

Version No: 3.6 Page 19 of 29 Issue Date: 08/06/2022

WANNATETM HT-80BS

Print Date: 08/06/2022

diisocyanate did not show a neurotoxic effect in a combined reproduction/developmental/neurotoxicity study. Life-time inhalation exposure to rats revealed a progression of non-neoplastic respiratory tract lesions, primarily to the nasal cavity, and represented the sequelae of non-specific irritation. Based on the presence of only reversible tissue responses to irritation at the low concentration of 0.005 ppm, this concentration was a NOAEL. No carcinogenic potential in rats was observed after life-time inhalation

- 1,6-Hexamethylene diisocyanate showed no mutagenic activity in vitro in bacterial and in mammalian cell test systems.
- 1,6-Hexamethylene diisocyanate showed no clastogenic activity in vivo.
- 1,6-Hexamethylene diisocyanate has no effect on fertility and post-natal viability through post-natal day 4 in the rat after inhalation up to 0.299 ppm. The overall NOEL was 0.005 ppm.

Inhalation of 1,6-hexamethylene diisocyanate during the pregnancy of rats produced maternal effects (nasal turbinate histopathology) at concentrations ³ 0.052 ppm. No developmental toxicity was observed up to 0.308 ppm.

N-BUTYL ACETATE

solvent naphtha 100

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Inhalation (rat) TCLo: 1320 ppm/6h/90D-I * [Devoe]

For Low Boiling Point Naphthas (LBPNs):

Acute toxicity:

LBPNs generally have low acute toxicity by the oral (median lethal dose [LD50] in rats > 2000 mg/kg-bw), inhalation (LD50 in rats > 5000 mg/m3) and dermal (LD50 in rabbits > 2000 mg/kg-bw) routes of exposure

Most LBPNs are mild to moderate eye and skin irritants in rabbits, with the exception of heavy catalytic cracked and heavy catalytic reformed naphthas, which have higher primary skin irritation indices.

Sensitisation:

LBPNs do not appear to be skin sensitizers, but a poor response in the positive control was also noted in these studies Repeat dose toxicity:

The lowest-observed-adverse-effect concentration (LOAEC) and lowest-observed-adverse-effect level (LOAEL) values identified following short-term (2-89 days) and subchronic (greater than 90 days) exposure to the LBPN substances. These values were determined for a variety of endpoints after considering the toxicity data for all LBPNs in the group. Most of the studies were carried out by the inhalation route of exposure. Renal effects, including increased kidney weight, renal lesions (renal tubule dilation, necrosis) and hyaline droplet formation, observed in male rats exposed orally or by inhalation to most LBPNs, were considered species- and sex-specific These effects were determined to be due to a mechanism of action not relevant to humans -specifically, the interaction between hydrocarbon metabolites and alpha-2-microglobulin. an enzyme not produced in substantial amounts in female rats, mice and other species, including humans. The resulting nephrotoxicity and subsequent carcinogenesis in male rats were therefore not considered in deriving LOAEC/LOAEL values.

Only a limited number of studies of short-term and subchronic duration were identified for site-restricted LBPNs. The lowest LOAEC identified in these studies, via the inhalation route, is 5475 mg/m3, based on a concentration-related increase in liver weight in both male and female rats following a 13-week exposure to light catalytic cracked naphtha. Shorter exposures of rats to this test substance resulted in nasal irritation at 9041 mg/m3

No systemic toxicity was reported following dermal exposure to light catalytic cracked naphtha, but skin irritation and accompanying histopathological changes were increased, in a dose-dependent manner, at doses as low as 30 mg/kg-bw per day when applied 5 days per week for 90 days in rats

No non-cancer chronic toxicity studies (= 1 year) were identified for site-restricted LBPNs and very few non-cancer chronic toxicity studies were identified for other LBPNs. An LOAEC of 200 mg/m3 was noted in a chronic inhalation study that exposed mice and rats to unleaded gasoline (containing 2% benzene). This inhalation LOAEC was based on ocular discharge and ocular irritation in rats. At the higher concentration of 6170 mg/m3, increased kidney weight was observed in male and female rats (increased kidney weight was also observed in males only at 870 mg/m3). Furthermore, decreased body weight in male and female mice was also observed at 6170 mg/m3

A LOAEL of 714 mg/kg-bw was identified for dermal exposure based on local skin effects (inflammatory and degenerative skin changes) in mice following application of naphtha for 105 weeks. No systemic toxicity was reported.

Genotoxicity:

Although few genotoxicity studies were identified for the site-restricted LBPNs, the genotoxicity of several other LBPN substances has been evaluated using a variety of in vivo and in vitro assays. While in vivo genotoxicity assays were negative overall, the in vitro tests exhibited mixed results.

For in vivo genotoxicity tests, LBPNs exhibited negative results for chromosomal aberrations and micronuclei induction, but exhibited positive results in one sister chromatid exchange assay although this result was not considered definitive for clastogenic activity as no genetic material was unbalanced or lost. Mixtures that were tested, which included a number of light naphthas, displayed mixed results (i.e., both positive and negative for the same assay) for chromosomal aberrations and negative results for the dominant lethal mutation assay. Unleaded gasoline (containing 2% benzene) was tested for its ability to induce unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) and replicative DNA synthesis (RDS) in rodent hepatocytes and kidney cells. UDS and RDS were induced in mouse hepatocytes via oral exposure and RDS was induced in rat kidney cells via oral and inhalation exposure. Unleaded gasoline (benzene content not stated) exhibited negative results for chromosomal aberrations and the dominant lethal mutation assay and mixed results for atypical cell foci in rodent renal and hepatic cells. For in vitro genotoxicity studies, LBPNs were negative for six out of seven Ames tests, and were also negative for UDS and for forward mutations LBPNs exhibited mixed or equivocal results for the mouse lymphoma and sister chromatid exchange assays, as well as for cell transformation and positive results for one bacterial DNA repair assay. Mixtures that were tested, which included a number of light naphthas, displayed negative results for the Ames and mouse lymphoma assays Gasoline exhibited negative results for the Ames test battery, the sister chromatid exchange assay and for one mutagenicity assay . Mixed results were observed for UDS and the mouse lymphoma assay.

While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be discounted based on the mixed in vitro genotoxicity results.

Although a number of epidemiological studies have reported increases in the incidence of a variety of cancers, the majority of these studies are considered to contain incomplete or inadequate information. Limited data, however, are available for skin

Carcinogenicity:

 Version No: 3.6
 Page 20 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

cancer and leukemia incidence, as well as mortality among petroleum refinery workers. It was concluded that there is limited evidence supporting the view that working in petroleum refineries entails a carcinogenic risk (Group 2A carcinogen). IARC (1989a) also classified gasoline as a Group 2B carcinogen; it considered the evidence for carcinogenicity in humans from gasoline to be inadequate and noted that published epidemiological studies had several limitations, including a lack of exposure data and the fact that it was not possible to separate the effects of combustion products from those of gasoline itself. Similar conclusions were drawn from other reviews of epidemiological studies for gasoline (US EPA 1987a, 1987b). Thus, the evidence gathered from these epidemiological studies is considered to be inadequate to conclude on the effect

No inhalation studies assessing the carcinogenicity of the site-restricted LBPNs were identified. Only unleaded gasoline has been examined for its carcinogenic potential, in several inhalation studies. In one study, rats and mice were exposed to 0, 200, 870 or 6170 mg/m3 of a 2% benzene formulation of the test substance, via inhalation, for approximately 2 years. A statistically significant increase in hepatocellular adenomas and carcinomas, as well as a non-statistical increase in renal tumours, were observed at the highest dose in female mice. A dose-dependent increase in the incidence of primary renal neoplasms was also detected in male rats, but this was not considered to be relevant to humans, as discussed previously. Carcinogenicity was also assessed for unleaded gasoline, via inhalation, as part of initiation/promotion studies. In these studies, unleaded gasoline did not appear to initiate tumour formation, but did show renal cell and hepatic tumour promotion ability, when rats and mice were exposed, via inhalation, for durations ranging from 13 weeks to approximately 1 year using an initiation/promotion protocol However, further examination of data relevant to the composition of unleaded gasoline demonstrated that this is a highly-regulated substance; it is expected to contain a lower percentage of benzene and has a discrete component profile when compared to other substances in the LBPN group.

Both the European Commission and the International Agency for Research on Cancer (IARC) have classified LBPN substances as carcinogenic. All of these substances were classified by the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1% by weight). IARC has classified gasoline, an LBPN, as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in petroleum refining" as Group 2A carcinogens (probably carcinogenic to humans).

Several studies were conducted on experimental animals to investigate the dermal carcinogenicity of LBPNs. The majority of these studies were conducted through exposure of mice to doses ranging from 694-1351 mg/kg-bw, for durations ranging from 1 year to the animals lifetime or until a tumour persisted for 2 weeks. Given the route of exposure, the studies specifically examined the formation of skin tumours. Results for carcinogenicity via dermal exposure are mixed. Both malignant and benign skin tumours were induced with heavy catalytic cracked naphtha, light catalytic cracked naphtha, light

straight-run naphtha and naphtha Significant increases in squamous cell carcinomas were also observed when mice were dermally treated with Stoddard solvent, but the latter was administered as a mixture (90% test substance), and the details of the study were not available. In contrast, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha

or unleaded gasoline was dermally applied to mice. Negative results for skin tumours were also observed in male mice dermally exposed to sweetened naphtha using an initiation/promotion protocol.

Reproductive/ Developmental toxicity:

s of human exposure to LBPN substances.

No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents.

NOAEC values for reproductive toxicity following inhalation exposure ranged from 1701 mg/m3 (CAS RN 8052-41-3) to 27 687 mg/m3 (CAS RN 64741-63-5) for the LBPNs group evaluated, and from 7690 mg/m3 to 27 059 mg/m3 for the site-restricted light catalytic cracked and full-range catalytic reformed naphthas. However, a decreased number of pups per litter and higher frequency of post-implantation loss were observed following inhalation exposure of female rats to hydrotreated heavy naphtha (CAS RN 64742-48-9) at a concentration of 4679 mg/m3, 6 hours per day, from gestational days 7-20. For dermal exposures, NOAEL values of 714 mg/kg-bw (CAS RN 8030-30-6) and 1000 mg/kg-bw per day (CAS RN 68513-02-0) were noted . For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg on gestational day 13.

For most LBPNs, no treatment-related developmental effects were observed by the different routes of exposure However, developmental toxicity was observed for a few naphthas. Decreased foetal body weight and an increased incidence of ossification variations were observed when rat dams were exposed to light aromatized solvent naphtha, by gavage, at 1250 mg/kg-bw per day. In addition, pregnant rats exposed by inhalation to hydrotreated heavy naphtha at 4679 mg/m3 delivered pups with higher birth weights. Cognitive and memory impairments were also observed in the offspring.

Low Boiling Point Naphthas [Site-Restricted]

Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cycloparaffins

The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the 'hydrocarbon continuum hypothesis', and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic

 Version No: 3.6
 Page 21 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion. After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates. The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid. The major routes of excretion of 1,2,4-trimethyl- benzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis . High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness . The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg). Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels. No effects were reported for rats exposed to a mixture of trimethyl- benzenes at 1700 ppm for 10 to 21 days

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia.

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible develop-mental neurotoxicity, was evident in rats in a 3-generation reproductive study

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- benzenes, 4-6 hours/day, 5 days/week over one generation

For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute Toxicity

Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50 s range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test quidelines.

Irritation and Sensitization

Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified.

Repeated Dose Toxicity

Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs.

 Version No: 3.6
 Page 22 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic effects.

Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category

Reproductive and Developmental Toxicity

Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3, respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex/group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex/group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21.

Systemic Effects on Parental Generations:

The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3).

Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a litter, number of females delivering a live litter, or male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation,, a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality. Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~ 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring. Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity. For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest

 Version No: 3.6
 Page 23 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation.

Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans.

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants).

Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus.

Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable.

HEXAMETHYLENE DIISOCYANATE POLYMER

* Bayer SDS ** Ardex SDS

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

WANNATETM HT-80BS & hexamethylene diisocyanate & HEXAMETHYLENE DIISOCYANATE POLYMER

Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens). Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, itching, hives and swelling of extremities

Isocyanate-containing vapours/ mists may cause inflammation of eyes and nasal passages.

Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material.

WANNATETM HT-80BS &

N-BUTYL ACETATE

Generally, linear and branched-chain alkyl esters are hydrolysed to their component alcohols and carboxylic acids in the intestinal tract, blood and most tissues throughout the body. Following hydrolysis the component alcohols and carboxylic acids are metabolized

Oral acute toxicity studies have been reported for 51 of the 67 esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids. The very low oral acute toxicity of this group of esters is demonstrated by oral LD50 values greater than 1850 mg/kg bw

Genotoxicity studies have been performed in vitro using the following esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids: methyl acetate, butyl acetate, butyl stearate and the structurally related isoamyl formate and demonstrates that these substances are not genotoxic.

The JEFCA Committee concluded that the substances in this group would not present safety concerns at the current levels of intake the esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids are generally used as flavouring substances up to average maximum levels of 200 mg/kg. Higher levels of use (up to 3000 mg/kg) are permitted in food categories such as chewing gum and hard candy. In Europe the upper use levels for these flavouring substances are generally 1 to 30 mg/kg foods and in special food categories like candy and alcoholic beverages up to 300 mg/kg foods

Internation Program on Chemical Safety: the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Esters of Aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids.; 1998

hexamethylene diisocyanate & HEXAMETHYLENE DIISOCYANATE POLYMER

No significant acute toxicological data identified in literature search.

N-BUTYL ACETATE & HEXAMETHYLENE DIISOCYANATE POLYMER

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

 Version No: 3.6
 Page 24 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	•	STOT - Single Exposure	×
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

★ - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

WANNATE TM HT-80BS	Endpoint	Test Duration (hr	Test Duration (hr) Species Value		:	Source		
WANNAIE HI-80B2	Not Available	Not Available Not Available		Available	Not Available	ailable Not Availab		ilable
	Endpoint	Test Duration (hr)	Species			Value		Source
hexamethylene	LC50	96h	Fish			22mg/l		1
diisocyanate	EC0(ECx)	24h	Crustacea			<0.33mg/	/I	1
	EC50	72h	Algae or o	ther aquatic pla	ants	>77.4mg/	/I	2
	Endpoint	Test Duration (hr)	Specie	3		Value		Source
	EC50	72h	Algae o	r other aquatic	plants	246mg	g/l	2
n-butyl acetate	EC50(ECx)	96h	Fish	Fish		18mg/	1	2
	EC50	48h	Crustac	Crustacea		32mg/	1	1
	LC50	96h	Fish	Fish		18mg/	1	2
	Endpoint	Test Duration (hr)	Specie	S		Value		Source
	EC50	72h	Algae o	Algae or other aquatic plants		19mg/l		1
solvent naphtha 100	NOEC(ECx)	72h	Algae o	Algae or other aquatic plants		1mg/l		1
	EC50	48h	Crustae	Crustacea		6.14mg	g/l	1
	EC50	96h	Algae	r other aquatic	plants	64mg/l		2
	Endpoint	Test Duration (hr)	Species		Valu	e	Sour	ce
	EC50	72h	Algae or oth	Algae or other aquatic plants		>1000mg/l No		vailable
hexamethylene diisocyanate polymer	EC50(ECx)	48h	Crustacea	Crustacea >		>100mg/l Not		vailable
diisocyanate polymer	EC50	48h	Crustacea	stacea >10		Omg/I Not A		vailable
	LC50	96h	Fish		>100)mg/l	Not A	vailable

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

for polyisocyanates:

Polyisocyanates are not readily biodegradable. However, due to other elimination mechanisms (hydrolysis, adsorption), long retention times in water are not to be expected. The resulting polyurea is more or less inert and, due to its molecular size, not bioavailable. Within the limits of water solubility, polyisocyanates have a low to moderate toxicity for aquatic organisms.

Hydrolysis would represents the primary fate mechanism for the majority of the commercial isocyanate monomers, but, is tempered somewhat by the lack of water solubility. In the absence of hydrolysis, sorption to solids (e.g., sludge and sediments) will be the primary mechanism of removal. Hydrolysis products are predominantly insoluble stable polyureas.

Biodegradation is minimal for most compounds and volatilisation is negligible. Atmospheric degradation is not expected with removal from air occurring by washout or dry deposition. Volatilisation from surface waters (e.g., lakes and rivers) is expected to take years. In wastewater treatment this process is not expected to be significant.

 Version No: 3.6
 Page 25 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

Review of the estimated properties of the isocyanates suggest that sorption is the primary removal mechanism in the ambient environment and in wastewater treatment in the absence of significant hydrolysis. Sorption to solids in wastewater treatment is considered strong to very strong for most compounds. Sorption to sediments and soils in the ambient environment is very strong in most instances. Migration to groundwater and surface waters is not expected due to sorption or hydrolysis.

Hydrolysis of the N=C=O will occur in less than hours in most instances and within minutes for more than 90% of the commercial isocyanates. However, the low to very low solubility of these substances will generally lessen the effectiveness of hydrolysis as a fate pathway. But hydrolysis should be considered one of the two major fate processes for the isocyanates.

Aerobic and/or anaerobic biodegradation of the isocyanates is not expected to occur at significant levels. Most of the substances take several months to degrade. Degradation of the hydrolysis products will occur at varying rates depending on the moiety formed.

For n-Butvl Acetate:

Koc: ~200; log Kow: 1.78; Half-life (hr) air: 144;

Half-life (hr) H2O surface water: 178 - 27156;

Henry's atm: m3 /mol: 3.20E-04 BOD 5 if unstated: 0.15-1.02,7%;

COD: 78%; ThOD: 2.207; BCF: 4-14.

Environmental Fate: Terrestrial Fate - Butyl acetate is expected to have moderate mobility in soil. Volatilization of n-butyl acetate is expected from moist and dry soil surfaces. n-Butyl acetate may biodegrade in soil. Aquatic Fate: n-Butyl acetate is not expected to adsorb to suspended solids and sediment in water. Butyl acetate is expected to volatilize from water surfaces. Estimated half-lives for a model river and model lake are 7 and 127 hours respectively. Hydrolysis may be an important environmental fate for this compound. Atmospheric Fate: n-Butyl acetate is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase n-butyl acetate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 4 days.

Ecotoxicity: It is expected that bioconcentration in aquatic organisms is low. n-Butyl acetate is not acutely toxic to fish specifically, island silverside, bluegill sunfish, fathead minnow, and water fleas and has low toxicity to algae.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
hexamethylene diisocyanate	LOW	LOW
n-butyl acetate	LOW	LOW
hexamethylene diisocyanate polymer	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
hexamethylene diisocyanate	LOW (LogKOW = 3.1956)
n-butyl acetate	LOW (BCF = 14)
hexamethylene diisocyanate polymer	LOW (LogKOW = 7.5795)

Mobility in soil

Ingredient	Mobility
hexamethylene diisocyanate	LOW (KOC = 5864)
n-butyl acetate	LOW (KOC = 20.86)
hexamethylene diisocyanate polymer	LOW (KOC = 18560000)

Other adverse effects

Not Available

SECTION 13 Disposal considerations

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Waste chemicals:

• If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.

 Version No: 3.6
 Page 26 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

• Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- ▶ Recycling
- ► Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Contaminated packing materials:

Refer to section above

Precautions for Transport:

Refer to section above

SECTION 14 Transport information

Labels Required

Marine Pollutant

NO

Land transport (UN)

UN number	1866					
UN proper shipping name	RESIN SOLUTION,	SIN SOLUTION, flammable				
Transport hazard class(es)	Class 3 Subrisk Not Ap	pplicable				
Packing group	Ш					
Environmental hazard	Not Applicable					
Special precautions for user	Special provisions Limited quantity	5 L 223				

Air transport (ICAO-IATA / DGR)

1866			
n solution flammable)		
AO/IATA Class	3 Not Applicable		
G Code	3L		
Applicable			
ecial provisions		А3	
Cargo Only Packing Instructions		366	
Cargo Only Maximum Qty / Pack		220 L	
Δ	O/IATA Class O / IATA Subrisk G Code Applicable ecial provisions Togo Only Packing Inc.	Not Applicable G Code 3L Applicable Applicable	AO/IATA Class 3 AO / IATA Subrisk Not Applicable G Code 3L Applicable acial provisions A3 Ago Only Packing Instructions 366

 Version No: 3.6
 Page 27 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

Passenger and Cargo Packing Instructions	355
Passenger and Cargo Maximum Qty / Pack	60 L
Passenger and Cargo Limited Quantity Packing Instructions	Y344
Passenger and Cargo Limited Maximum Qty / Pack	10 L

Sea transport (IMDG-Code / GGVSee)

UN number	1866		
UN proper shipping name	RESIN SOLUTION flammable		
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk N	lot Applicable	
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number Special provisions Limited Quantities	F-E, S-E 223 955 5 L	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
hexamethylene diisocyanate	Not Available
n-butyl acetate	Not Available
solvent naphtha 100	Not Available
hexamethylene diisocyanate polymer	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
hexamethylene diisocyanate	Not Available
n-butyl acetate	Not Available
solvent naphtha 100	Not Available
hexamethylene diisocyanate polymer	Not Available

Precautions for Transport

Transportation precautions:

- Documentation covering all dangerous goods carried on the vehicle
- The transport unit must be placarded and marked in accordance with relevant transporting requirements.
- Personal protective equipment must be in sufficient quantities and suitable for use by the driver of the vehicle and where required for escape purposes, any other persons travelling in the vehicle.
- Vehicles transporting dangerous goods need to be equipped with sufficient and adequate fire protection systems and emergency equipment to handle spillages.
- Use flameproof or intrinsically safe electrical equipment
- Ensure all ignition sources are identified and eliminated or reduced where there is any likelihood of an incident due to a spill or release of fire risk dangerous goods.
- Likely to be incompatible however refer to SDS for further details:

Class 2.1. 2.2, 2.2 (with subrisk 5.1), 2.3, 4.1, 4.2, 4.3, 5.1, 5.2, 6.1

- If applicable, use appropriate types of segregation devices to isolate incompatible dangerous goods:
- Incompatible for transport with foodstuffs (including stock feed).
- Routes for road vehicles should avoid heavily populated or environmentally sensitive areas, congested crossings or a concentration of people
- Vehicle exhaust or hot engine components must be shielded to ensure cargo temperatures cannot be raised.

Suitable Containers

See section 7

Version No: 3.6 Page 28 of 29 Issue Date: 08/06/2022 Print Date: 08/06/2022

WANNATETM HT-80BS

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

hexamethylene diisocyanate is found on the following regulatory lists

China Inventory of Existing Chemical Substances

China Occupational Exposure Limits for Hazardous Agents in the Workplace

China Inventory of Hazardous Chemicals (Chinese)

n-butyl acetate is found on the following regulatory lists

China Inventory of Existing Chemical Substances

China Occupational Exposure Limits for Hazardous Agents in the Workplace

International Agency for Research on Cancer (IARC) - Agents Classified by

China Inventory of Hazardous Chemicals (Chinese)

solvent naphtha 100 is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

China Inventory of Existing Chemical Substances

the IARC Monographs

hexamethylene diisocyanate polymer is found on the following regulatory lists

China Inventory of Existing Chemical Substances

National Inventory Status

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (hexamethylene diisocyanate; n-butyl acetate; solvent naphtha 100)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	No (hexamethylene diisocyanate polymer)	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	No (hexamethylene diisocyanate polymer)	
Vietnam - NCI	Yes	
Russia - FBEPH	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	08/06/2022
Initial Date	12/09/2017

SDS Version Summary

Version	Date of Update	Sections Updated
2.6	08/06/2022	Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Advice to Doctor, Chronic Health, Classification, Disposal, Environmental, Exposure Standard, Fire Fighter (fire/explosion hazard), Fire Fighter (fire fighting), First Aid (eye), First Aid (inhaled), First Aid (swallowed), Handling Procedure, Ingredients, Personal Protection (other), Storage (storage incompatibility), Storage (storage requirement), Storage (suitable container), Transport

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 Version No: 3.6
 Page 29 of 29
 Issue Date: 08/06/2022

 Print Date: 08/06/2022
 Print Date: 08/06/2022

WANNATETM HT-80BS

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard
OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Disclaimer

The information in the SDS applies only for the specified product and does not include mixtures of this product with other substances and mixtures. The SDS provides product safety information for personnel trainned to use this product only.

Powered by AuthorITe, from Chemwatch.